Tilman, D., May, RM, Lehman, CL & Nowak, MA Habitat destruction and extinction debt. Nature 37165-66 (1994).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 52045–50 (2015).
Urban, MC Accelerating extinction risk from climate change. Science 348571–573 (2015).
Fonseca, CR et al. Conservation biology: four decades of problem- and solution-based research. Perspective. Ecol. Conserv. 19121–130 (2021).
Google Scholar
Smits, P. & Finnegan, S. How predictable is extinction? Forecast species survival on a million-year time scale. Philos. Trans. R. Soc. B Biol. Sci. 37420190392 (2019).
Hanski, I. & Ovaskainen, O. Extinction debt at the threshold of extinction. Conserv. Biol. 16666–673 (2002).
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24564–571 (2009).
Ridding, LE et al. Inconsistent detection of extinction debt using different methods. Echography 4433–43 (2021).
Berglund, H. & Jonsson, BG Verification of an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv. Biol. 19338–348 (2005).
Jones, IL, Bunnefeld, N., Jump, AS, Peres, CA & Dent, DH Extinction debt on reservoir land bridge islands. Biol. Conserv. 19975–83 (2016).
Triantis, K. et al. Extinction debt on oceanic islands. Echography 33285–294 (2010).
Google Scholar
Wearn, OR, Reuman, DC & Ewers, RM Extinction debt and conservation opportunities in the Brazilian Amazon. Science 337228–232 (2012).
Pan, Y. et al. Spatial and temporal scales of landscape structure affect the relationship between biodiversity and landscape across ecologically distinct species groups. Landsc. Ecol. 372311–2325 (2022).
Soga, M. & Koike, S. Mapping the potential extinction debt of butterflies in a modern city: Implications for conservation priorities in urban landscapes. Animation Conserv. 161–11 (2013).
Knapp, S., Winter, M. & Klotz, S. Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. J. Appl. Ecol. 541152–1160 (2017).
McGill, BJ, Dornelas, M., Gotelli, NJ & Magurran, AE Fifteen forms of biodiversity trends in the Anthropocene. Trends Ecol. Evol. 30104–113 (2015).
Chen, Y. & Peng, S. Evidence and mapping of extinction debt for global forest-dwelling reptiles, amphibians and mammals. Sci. Rep. 71–10 (2017).
Google Scholar
Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed loss of biodiversity at different trophic levels. Ecol. Easy. 1. 3597–605 (2010).
Cowlishaw, G. Predicting the pattern of African primate diversity decline: An extinction debt from historical deforestation. Conserv. Biol. 1. 31183-1193 (1999).
Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Sarmento Cabral, J. Understanding extinction debt: spatio-temporal scales, mechanisms and a roadmap for future research. Echography 421973–1990 (2019).
Aerts, R. & Honnay, O. Forest restoration, biodiversity and ecosystem function. BMC Ecol. 111–21 (2011).
Haddad, NM et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1e1500052 (2015).
Maxwell, SL et al. Site-based conservation in the twenty-first century. Nature 586217–227 (2020).
IUCN. IUCN Red List of Threatened Species, version 2019-1. Downloaded on 23 February 2022. (2019).
Brown, JL et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11e0144076 (2016).
Powney, GD, Grenyer, R., Orme, CDL, Owens, IPF & Meiri, S. Hot, dry and different: Australian lizard richness differs from that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19386–396 (2010).
Pianka, ER Diversity of desert lizards: additional comments and some data. Is. Nat. 134344-364 (1989).
Chen, YH Combining species-area-habitat relationship and environmental cluster analysis to set conservation priorities: A study in the Zhoushan Archipelago, China. Conserv. Biol. 23537–545 (2009).
Ricklefs, RE & Lovette, IJ The roles of island area per se and habitat diversity in species-area relationships for four Lesser Antillean faunal groups. J. Anim. Ecol. 681142-1160 (1999).
Souza, FL, Martins, FI & Raizer, J. Habitat heterogeneity and anuran communities in an agroecosystem of the Pantanal in Brazil. Phyllomedusa 1. 341–50 (2014).
Kelt, DA & Van Vuren, DH The ecology and macroecology of mammalian home ranges. Is. Nat. 157637–645 (2001).
McNab, BK Bioenergetics and the determination of home range size. Is. Nat. 97133-140 (1963).
Powell, RA & Mitchell, MS What is a home run? J. Mammals. 93948–958 (2012).
Hoffmann, S., Irl, SDH & Beierkuhnlein, C. Predicted climate change within terrestrial protected areas worldwide. Nat. Commun. 101–10 (2019).
Giam, X. et al. Reservoirs of wealth: least disturbed tropical forests are centers of untold species diversity. Proc. R. Soc. B 27967–76 (2012).
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environment. 2010–15 (2022).
Li, H. et al. A large number of vertebrates began rapid population decline in the late 19th century. Proc. Natl Acad. Sci. USA 11314079–14084 (2016).
Pringle, RM Upgrading protected areas to conserve wildlife biodiversity. Nature 54691–99 (2017).
Forzieri, G., Dakos, V., McDowell, NG, Ramdane, A. & Cescatti, A. New signals of declining forest resilience under climate change. Nature 608534–539 (2022).
Diamond, JM Biogeographic kinetics: estimating relaxation times for avifaunas on southwest Pacific islands. Proc. Natl Acad. Sci. USA 693199-3203 (1972).
Jackson, ST & Sax, DF Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25153–160 (2010).
Foley, JA et al. Amazonia Revealed: Forest Degradation and Loss of Ecosystem Goods and Services in the Amazon Basin. Front. Ecol. Environment. 525–32 (2007).
Asamoah, EF, Beaumont, LJ & Maina, JM Climate and land use change reduce the benefits of terrestrial protected areas. Nat. Climate. Chang. 111105–1110 (2021).
Hurtt, GC et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvesting and resulting secondary land areas. Climate. Change 109117–161 (2011).
Peng, S. et al. Land use sensitivity changes emission estimates to historical land use and land cover mapping. Glob. Biogeochem. Cycles 31626–643 (2017).
Jain, AK, Meiyappan, P., Song, Y. & House, JI CO2 emissions from land-use change are more affected by nitrogen cycling than by choice of land cover data. Glob. Chang. Biol. 192893–2906 (2013).
Poulter, B. et al. Vegetation feature type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 82315–2328 (2015).
Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the past millennium. Global Biogeochem. Cycles 22(2008).
Dietz, FC The industrial Revolution. In the Hands of a Child (1970).
Gütschow, J., Jeffery, L. & Gieseke, R. The PRIMAP-hist national historical emissions time series (1850-2016). V. 2.0. GFZ Data Services (2019).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial kingdom. Bioscience 67534–545 (2017).
Protected Planet: World Database on Protected Areas (UNEP-WCMC and IUCN, accessed 9 January 2022); www.protectedplanet.net.
Butchart, SHM et al. Shortcomings and solutions to meet national and global protected area targets. Conserv. Easy. 8329–337 (2015).
R core team. R: A Language and Environment for Statistical Computing Version 4.0.2 (2020).